ZnO nanowire (NW) visible-blind UV photodetectors with internal photoconductive gain as high as G ∼ 10 8 have been fabricated and characterized. The photoconduction mechanism in these devices has been elucidated by means of time-resolved measurements spanning a wide temporal domain, from 10 -9 to 10 2 s, revealing the coexistence of fast (τ ∼ 20 ns) and slow (τ ∼ 10 s) components of the carrier relaxation dynamics. The extremely high photoconductive gain is attributed to the presence of oxygen-related hole-trap states at the NW surface, which prevents charge-carrier recombination and prolongs the photocarrier lifetime, as evidenced by the sensitivity of the photocurrrent to ambient conditions. Surprisingly, this mechanism appears to be effective even at the shortest time scale investigated of t < 1 ns. Despite the slow relaxation time, the extremely high internal gain of ZnO NW photodetectors results in gain-bandwidth products (GB) higher than ∼10 GHz. The high gain and low power consumption of NW photodetectors promise a new generation of phototransistors for applications such as sensing, imaging, and intrachip optical interconnects.Because of its wide band gap (E g ) 3.4 eV), low cost, and ease of manufacturing, ZnO is emerging as a potential alternative to GaN in optoelectronic applications, 1 including light-emitting diodes, laser diodes, and photodetectors for the UV spectral range. In the past decade, the demonstration of a large variety of functional ZnO nanowire (NW) devices such as field effect transistors, 2,3 optically pumped lasers, 4,5 and chemical and biological sensors 6 have aroused growing interest in this material. 7 In particular, ZnO NW photodetectors and optical switches have been the subject of extensive investigations. [8][9][10][11][12][13][14][15][16][17][18] Despite the abundant research on NW photoconduction, 19 the two main factors contributing to the high photosensitivity of such nanostructures have been scarcely recognized: (1) the large surface-to-volume ratio and the presence of deep level surface trap states in NWs greatly prolongs the photocarrier lifetime; (2) the reduced dimensionality of the active area in NW devices shortens the carrier transit time. Indeed, the combination of long lifetime and short transit time of charge carriers can result in substantial photoconductive gain. [20][21][22] In this letter, we present ZnO NW photodetectors with large photoresponse; upon UV illumination at relatively low light intensities (I ∼ 10 µW/cm 2 ), the current in ZnO NWs increases by several orders of magnitude, which translates to a photoconductive gain of G > 10 8 . To elucidate the photoconduction mechanism that involves fast carrier thermalization and trapping at the NW surface and electronhole recombination at extended and localized states, we have studied the photoconductivity of ZnO NWs by time-resolved measurements and in different ambient conditions (e.g., in air or under vacuum). A physical model was developed to illustrate the origin of the photoconductive gain in ...