Although polymer nanoimprinting on glass substrates has been widely employed for the fabrication of functional anti-reflective (AR) nanostructures, several drawbacks exist with respect to durability and delamination. The direct patterning of glass material is a potential solution for outdoor applications that require AR functional nanostructured glass plates. In this study, a glass imprinting technique was employed for the fabrication of an AR nanostructure on a soda-lime glass substrate using a vitreous carbon (VC) stamp. The VC stamp, which had a high aspect ratio nanopost array with a pitch of 325 nm, diameter of 110 nm, and height of ~220 nm, was fabricated by the carbonization of a replicated Furan precursor from an Si master. During the glass imprinting process using the nanopost array VC stamp, the softened glass material gradually protruded into the spaces between the nanopins owing to viscoelastic behavior, and one can achieve a cross-sinusoidal surface relief under specific imprinting condition, which can be used as an AR nanostructure with a gradually increasing refractive index. The effects of the processing temperature on the surface profile of the glass imprinted parts and the measured transmission spectra were analyzed, and a glass imprinting temperature of 700 °C and pressure of 1 MPa were found to be the optimum condition. The height of the fabricated cross-sinusoidal nanostructure was 80 nm, and the light transmission was increased by ~2% over the entire visible-light range. Furthermore, the measured transmission spectrum observed to be in good agreement with the simulation results.