“…Let g be a simple complex Lie algebra (throughout this paper g = sl n (C)), , : g × g → C the Killing form. The classical Yang-Baxter equation is (1) [r 12 (y 1 , y 2 ), r 23 (y 2 , y 3 )] + [r 12 (y 1 , y 2 ), r 13 (y 1 , y 3 )] + [r 13 (y 1 , y 3 ), r 23 (y 2 , y 3 )] = 0, where r(x, y) is the germ of a meromorphic function of two complex variables in a neighbourhood of 0, taking values in g ⊗ g. A solution of (1) is called unitary if r 12 (y 1 , y 2 ) = −r 21 (y 2 , y 1 ) and non-degenerate if r(y 1 , y 2 ) ∈ g ⊗ g ∼ = g * ⊗ g ∼ = End(g) is invertible for generic (y 1 , y 2 ). On the set of solutions of (1) there exists a natural action of the group of holomorphic function germs φ : (C, 0) −→ Aut(g) given by the rule (2) r(y 1 , y 2 ) → φ(y 1 ) ⊗ φ(y 2 ) r(y 1 , y 2 ).…”