We prove localization and Zariski-Mayer-Vietoris for higher Grothendieck-Witt groups, alias hermitian K-groups, of schemes admitting an ample family of line-bundles. No assumption on the characteristic is needed, and our schemes can be singular. Along the way, we prove Additivity, Fibration and Approximation theorems for the hermitian K-theory of exact categories with weak equivalences and duality.