The electronics package in a spacecraft is subjected to a variety of dynamic loads during launch phase and suitable thermal environment for the mission life. The dynamic and thermal analyses performed for a structurally reconfigured electronics package. Two different simulation models are developed to carry out the analyses. This paper discusses in two parts, in part-1, the vibration responses are determined at various critical locations, including on the Printed Circuit Board (PCB) for the vibration loads specified by launch vehicle using Finite Element Analysis (FEA). The mechanical properties of PCB are determined from the test specimens, which are then incorporated in the finite element model. In part-2, the steady-state temperature distributions on the components and on the PCB are determined, to check the effectiveness of heat transfer path from the components to the base of the package and to verify the predicted values are within the acceptable temperature limits specified. The predicted temperature values are then compared with on-orbit observations.