A broad overview is given of some key recent developments in solid state NMR techniques that have driven enhanced applications to inorganic materials science. Reference is made to advances in hardware, pulse sequences and associated computational methods (e.g. first principles calculations, spectral simulation), along with their combination to provide more information about solid phases. The resulting methodology has allowed more nuclei to be observed and more structural information to be extracted. Cross referencing between experimental parameters and their calculation from the structure has seen an added dimension to NMR as a characterisation probe of materials. Emphasis is placed on the progress made in the last decade especially from those nuclei that were little studied previously. The general points about technique development and the increased range of nuclei observed are illustrated through a range of specific exemplars from inorganic materials science.