Accurate models of power electronic converters can greatly enhance the accuracy of hardware-in-the-loop (HIL) simulators. This can result in faster and more cost-effective design cycles in industrial applications. This paper presents a detailed hardware model of the IGBT and power diode at the device level suggested for emulating power electronic converters on a field programmable gate array (FPGA). The static visualization of the IGBT component involves an arrangement of equivalent models for both the MOSFET and bipolar transistor in a cascading configuration. The dynamic aspect is represented by inter-electrode nonlinear capacitances. In an effort to expedite the development process while still producing reliable results, the algorithm for the simulation system was built utilizing FPGA-based rapid prototyping via the HDL Coder in MATLAB software (R2019b). Essentially, the HDL Coder transforms the Simulink blocks of these devices within MATLAB into a hardware description language (HDL) suitable for implementation on an FPGA. To evaluate the suggested IGBT hardware model and the nonlinear circuit simulation technique, a chopper circuit is replicated, and an FPGA-in-the-loop simulation is carried out to compare the efficacy and accuracy of the model with both offline simulation results and real-time simulation results using MATLAB Simulink software and the Altera FPGA Cyclone IV GX development board.