Recent research has used virtual environments (VEs), as presented via virtual reality (VR) headsets, to study human behavior in hypothetical fire scenarios. One goal of using VEs in fire scenarios is to elicit patterns of behavior which more closely align to how individuals would react to real fire emergency situations. The present study investigated whether elicited behaviors and perceived risk varied during fire scenarios presented as VEs via two viewing conditions. These included a VR condition, where the VE was rendered as 360-degree videos presented in a VR headset, and a screen condition, where VEs were rendered as fixed-view videos via a computer monitor screen. We predicted that the selection of actions during the scenario would vary between conditions, that participants would rate fires as more dangerous if they developed more quickly and when smoke was rendered as thicker, and that participants would report greater levels of immersion in the VR condition. A total of 159 participants completed a decision-making task where they viewed videos of an incipient fire in a residential building and judged what action to take. Initial action responses to the fire scenarios varied between both viewing and smoke conditions, with those assigned to the thicker smoke and screen conditions being more likely to take protective action. Risk ratings also varied by smoke condition, with evidence of higher perceived risk for thicker smoke. Several factors of self-reported immersion (namely ‘interest’, ‘emotional attachment’, ‘focus of attention’, and ‘flow’) were associated with risk ratings, with perceived presence associated with initial actions. The present study provides evidence that enhancing immersion and perceived risk in a VE contributes to a different pattern of behaviors during simulated fire decision-making tasks. While our investigation only addressed the ideas of presence in an environment, future research should investigate the relative contribution of interactivity and consequences within the environment to further identify how behaviors during simulated fire scenarios are affected by each of these factors.