Photon sciences and technologies establish the building blocks for myriad scientific and engineering frontiers in life and energy sciences. Because of their overarching functionality, the developmental roadmap and opportunities underpinned by photonics are often semiotically mediated by the delineation of subject areas of application. In this perspective article, we map current and emerging linkages between three intersecting areas of research stewarded by advanced photonics technologies, namely light by design, outlined as (a) quantum and structured photonics, (b) light–matter interactions in accelerators and accelerator-based light sources, and (c) ultrafast sciences and quantum molecular dynamics. In each section, we will concentrate on state-of-the-art achievements and present prospective applications in life sciences, biochemistry, quantum optics and information sciences, and environmental and chemical engineering, all founded on a broad range of photon sources and methodologies. We hope that this interconnected mapping of challenges and opportunities seeds new concepts, theory, and experiments in the advancement of ultrafast photon sciences and light–matter interactions. Through this mapping, we hope to inspire a critically interdisciplinary approach to the science and applications of light by design.