2022
DOI: 10.3390/met12101632
|View full text |Cite
|
Sign up to set email alerts
|

Simulating Diffusion Induced Grain Boundary Migration in Binary Fe–Zn

Abstract: A recently developed phase-field model for simulating diffusion-induced grain boundary migration (DIGM) is applied to binary Fe–Zn. The driving force for the boundary migration is assumed to come from the coherency strain energy mechanism suggested by Sulonen. The effect of the angle of the grain boundary with the surface on the velocity of the boundary migration is studied in detail. The simulation results compare favorably with experimental observations, such as the oscillatory motion of the grain boundary, … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 29 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?