This paper analyzes the possible head and chest injuries, produced in a Hybrid III dummy model of a six-year-old child during a rollover test, while the child uses a passive safety system low-back booster (LBB). Vehicle seats and passive safety systems were modeled with a CAD (Computer Aided Design) software; later, all elements were analyzed using the finite element method (FEM) with LS-DYNA® software. The border conditions were established for each study, in accordance with the regulations of Federal Motor Vehicle Safety Standards (FMVSS), and following the FMVSS 213 standard for the mounting and fastening of the infant, the FMVSS 208 for the dolly methodology test with the vehicle rollover was performed, implementing such analysis under the same conditions for a vehicle Toyota Yaris 2010. The numerical simulations were performed during an interval of 1 second, obtaining data values for periods of 2 milliseconds. This paper examines the efficiency of the system; three case studies were carried out: Study I: vehicle seat belt (VSB); Study II: the LBB system was secured by the seat belt; Study III: the LBB system with ISOFIX anchorage. The values of decelerations for the head and thorax of the infant were obtained, as well as neck flexion and thoracic deflection. The main factor to reduce injuries during a rollover accident is the correct anchorage of the LBB, and this is achieved with the ISOFIX system, since it prevents the independent movement of the LBB, unlike when it is fastened with the seat belt of the vehicle. The results show low levels of head and chest injury when ISOFIX is used because of reduced thoracic deflection during infant retention.