Nowadays, additive manufacturing provides far-reaching possibilities for use in radio frequency components. In addition to almost unlimited freedom of design as compared to conventional manufacturing, the absence of further assembly steps is a key aspect of 3D printing. In this paper, a 3D printed monolithic antenna for millimeter wave-sensing applications is presented with a full hemispherical coverage. The antenna is designed as an ensemble of a waveguide horn antenna and a differentially fed dipole antenna. The slotted waveguide approach was utilized to improve the manufacturing quality on the waveguide inside. The influence of two optimized antenna elements, a metal plane, and a cut-out window, on the beam pattern is comprehensively investigated. A huge half power beam width of 142 • in both directions, elevation and azimuth, is presented at 79 GHz and a boresight gain of 4.7 dBi was measured. The beam pattern in the frequency range from 76 to 81 GHz is studied in greater detail, where a half power beam width of at least 112 • is achieved. Due to the −10 dB matching capability bandwidth of over 28 GHz, the antenna is also suitable for extremely broadband applications with a −5 dB angular width of better than 100 • . Furthermore, the system design describes how to integrate the antenna into hybrid circuit designs and the manufacturing tolerances are examined. The antenna offers attractive possibilities for millimeter wave-sensing applications in the area of assisted living and industrial monitoring, especially whenever blind spots have to be avoided.