The challenges posed by environmental pollution, water scarcity, and energy limitations resulting from industrialization and modernization pose significant threats to human habitats. Consequently, assessing ecological livability and delineating pathways for improvement carry considerable practical importance. Leveraging panel data encompassing 288 cities in China from 2010 to 2021, this study establishes an evaluation system for ecological livability, encompassing three dimensions: natural greenery level, residential comfort level, and environmental governance level. Subsequently, the study measures the ecological livability level and investigates the impact of "sponge city" pilots on ecological livability and their underlying mechanisms using a multi-period difference-in-differences model. Our findings underscore the substantial role of "sponge city" pilot projects in bolstering ecological livability, with robustness observed across various models and specifications. Specifically, human capital concentration and green technology innovation emerge as pivotal pathways through which "sponge city" pilots augment ecological livability. Moreover, the effectiveness of "sponge city" pilots varies across regions due to disparities in drought severity and water supply, with more pronounced effects observed in arid areas and cities facing water supply shortages. This research furnishes comprehensive theoretical and empirical underpinnings for comprehending the influence of "sponge city" pilots on ecological livability, offering valuable insights and recommendations to inform future efforts aimed at enhancing ecological livability and fostering sustainable development.