This research work presents a modified sine-cosine optimized maximum power point tracking (MPPT) algorithm for grid integration. The developed algorithm provides the maximum power extraction from a photovoltaic (PV) panel and simplified implementation with a benefit of high convergence velocity. Moreover, the performance and ability of the modified sine-cosine optimized (MSCO) algorithm is equated with recent particle swarm optimization and artificial bee colony algorithms for comparative observation. Practical responses is analyzed under steady state, dynamic, and partial shading conditions by using dSPACE real controlling board laboratory scale hardware implementation. The MSCO-based MPPT algorithm always shows fast convergence rate, easy implementation, less computational burden and the accuracy to track the optimal PV power under varying weather conditions. The experimental results provided in this paper clearly show the validation of the proposed algorithm. INDEX TERMS Artificial bee colony, sine-cosine optimized, maximum power point tracking, photovoltaic, particle swarm optimization.