The recent COVID-19 pandemic once again showed the value of harnessing reliable and timely data in fighting the disease. Obtained from multiple sources via different collection streams, an immense amount of data is processed to understand and predict the future state of the disease. Apart from predicting the spatio–temporal dynamics, it is used to foresee the changes in human mobility patterns and travel behaviors and understand the mobility and spread speed relationship. During this period, data-driven analytic approaches and Operations Research tools are widely used by scholars to prescribe emerging transportation and location planning problems to guide policy-makers in making effective decisions. In this study, we provide a review of studies which tackle transportation and location problems during the COVID-19 pandemic with a focus on data analytics. We discuss the major data collecting streams utilized during the pandemic era, highlight the importance of rapid and reliable data sharing, and give an overview of the challenges and limitations on the use of data.