2022
DOI: 10.1088/2632-2153/ac6286
|View full text |Cite
|
Sign up to set email alerts
|

Simulation-based inference with approximately correct parameters via maximum entropy

Abstract: Inferring the input parameters of simulators from observations is a crucial challenge with applications from epidemiology to molecular dynamics. Here we show a simple approach in the regime of sparse data and approximately correct models, which is common when trying to use an existing model to infer latent variables with observed data. This approach is based on the principle of maximum entropy (MaxEnt) and provably makes the smallest change in the latent joint distribution to fit new data. This method requires … Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
3

Citation Types

0
3
0

Year Published

2023
2023
2023
2023

Publication Types

Select...
2
1

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(3 citation statements)
references
References 66 publications
0
3
0
Order By: Relevance
“…Typical experimental data used for ensemble refinement take the form of observables that are ensemble averages, such as those obtained from nuclear magnetic resonance or X-ray scattering experiments. Many methodologies have been proposed as general approaches to reweight ensembles using these averaged observables. …”
Section: Introductionmentioning
confidence: 99%
“…Typical experimental data used for ensemble refinement take the form of observables that are ensemble averages, such as those obtained from nuclear magnetic resonance or X-ray scattering experiments. Many methodologies have been proposed as general approaches to reweight ensembles using these averaged observables. …”
Section: Introductionmentioning
confidence: 99%
“…Advances in density estimation due to neural networks and deep learning enabled a new generation of powerful SBI methods, which produce surrogate models of the likelihood or posterior using simulated data [33]. SBI is a general approach [34,35] and a growing field with broad applications ranging from particle physics [36] to cosmology and astrophysics [37][38][39][40], nuclear fusion [41], genomics [42], and neuroscience [43,44].…”
Section: Introductionmentioning
confidence: 99%
“…Many approaches focus on reweighting the structures in a given prior ensemble, e.g. from an MD trajectory, see Crehuet et al (2019); Bottaro et al (2020); Barrett et al (2022) for some recent examples. Related approaches attempt to achieve better uncertainty treatment using a Bayesian approach, see Hummer and Köfinger (2015); Köfinger et al (2019), or apply reweighting to entire MD trajectories in a set of multiple trajectories, see Bolhuis et al (2021).…”
Section: Introductionmentioning
confidence: 99%