Cell Formation (CF) problem involves grouping the parts into part families and machines into manufacturing cells, so that parts with similar processing requirements are manufactured within the same cell. Many researches have suggested methods for CF. Few of these methods; have addressed the possible existence of exceptional elements (EE) in the solution and the effect of correspondent intercellular movement, which cause lack of segregation among the cells. This paper presents a simulation-based methodology, which takes into consideration the stochastic aspect in the cellular manufacturing (CM) system, to create better cell configurations. An initial solution is developed using any of the numerous CF procedures. The objective of the proposed method which provides performances ratings and cost-effective consist in determine how best to deal with the remaining EE. It considers and compares two strategies (1) permitting intercellular transfer and (2) exceptional machine duplication. The process is demonstrated with a numerical example.