Complementary advances in medical imaging, vascular biology and biomechanics promise to enable computational modelling of abdominal aortic aneurysms to play increasingly important roles in clinical decision processes. Using a finite-element-based growth and remodelling model of evolving aneurysm geometry and material properties, we show that regional variations in material anisotropy, stiffness and wall thickness should be expected to arise naturally and thus should be included in analyses of aneurysmal enlargement or wall stress. In addition, by initiating the model from best-fit material parameters estimated for non-aneurysmal aortas from different subjects, we show that the initial state of the aorta may influence strongly the subsequent rate of enlargement, wall thickness, mechanical behaviour and thus stress in the lesion. We submit, therefore, that clinically reliable modelling of the enlargement and overall rupture-potential of aneurysms may require both a better understanding of the mechanobiological processes that govern the evolution of these lesions and new methods of determining the patient-specific state of the pre-aneurysmal aorta (or correlation to currently unaffected portions thereof ) through knowledge of demographics, comorbidities, lifestyle, genetics and future non-invasive or minimally invasive tests.