2011
DOI: 10.1002/hyp.8026
|View full text |Cite
|
Sign up to set email alerts
|

Simulation of evapotranspiration and carbon dioxide flux in the wheat‐maize rotation croplands of the North China Plain using the Simple Biosphere Model

Abstract: Abstract:The North China Plain, which is critical for food production in China, is encountering serious water shortage due to heavy agricultural water requirement. The accurate modelling of carbon dioxide flux and evapotranspiration (ET) in croplands is thus essential for yield prediction and water resources management. The land surface model is powerful in simulating energy and carbon dioxide fluxes between land and atmosphere. Some key processes in the Simple Biosphere Model (Version 2, SiB2) were parameteri… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

1
5
0
4

Year Published

2012
2012
2024
2024

Publication Types

Select...
7

Relationship

0
7

Authors

Journals

citations
Cited by 19 publications
(10 citation statements)
references
References 52 publications
(64 reference statements)
1
5
0
4
Order By: Relevance
“…Therefore, specifying V cmax is critical and substantially contributes to terrestrial GPP (gross primary productivity) sensitivity to the atmospheric CO 2 concentration and the overall uncertainties of model-predicted carbon fluxes. In wheat, a 40% decrease in V cmax led to a 34% decrease in GPP (Lei et al, 2011), and a 10% increase in V cmax led to a 4% increase in yield in NCP (Mo et al, 2005). Although both parameters are tightly correlated with a plant's photosynthetic capacity, carboxylation capacity (V cmax ) has been measured and studied more extensively (Wullschleger, 1993;Leuning, 1997;Kattge and Knorr, 2007).…”
Section: Introductionmentioning
confidence: 99%
“…Therefore, specifying V cmax is critical and substantially contributes to terrestrial GPP (gross primary productivity) sensitivity to the atmospheric CO 2 concentration and the overall uncertainties of model-predicted carbon fluxes. In wheat, a 40% decrease in V cmax led to a 34% decrease in GPP (Lei et al, 2011), and a 10% increase in V cmax led to a 4% increase in yield in NCP (Mo et al, 2005). Although both parameters are tightly correlated with a plant's photosynthetic capacity, carboxylation capacity (V cmax ) has been measured and studied more extensively (Wullschleger, 1993;Leuning, 1997;Kattge and Knorr, 2007).…”
Section: Introductionmentioning
confidence: 99%
“…土壤参数 包括土壤热传导参数和土壤水分特征参数, 其中热 传导参数由模型计算得到, 水分特征参数来自于实 测. 为提高土壤水分模拟的精度, 我们将 SiB2 中原 有的 3 层土壤改为 10 层土壤, 并采用 Richards 方程 模拟土层之间的水分交换 [38] . 基于华北平原典型冬 小麦-夏玉米轮种制农田的实测数据, 我们对模型内 的 土 壤 蒸 发 进 行 了 重 新 参 数 化 , 并 对 模 型 中 的 Ball-Berry 气孔导度模型进行了参数率定 [38] .…”
Section: 模型介绍unclassified
“…为提高土壤水分模拟的精度, 我们将 SiB2 中原 有的 3 层土壤改为 10 层土壤, 并采用 Richards 方程 模拟土层之间的水分交换 [38] . 基于华北平原典型冬 小麦-夏玉米轮种制农田的实测数据, 我们对模型内 的 土 壤 蒸 发 进 行 了 重 新 参 数 化 , 并 对 模 型 中 的 Ball-Berry 气孔导度模型进行了参数率定 [38] . 另外, 由于 SiB2 未包含土壤呼吸(Rs)(包括根的自养呼吸和 土壤微生物的异养呼吸)的模拟, 所以无法计算 NEE, 因此我们在模型中引入了土壤呼吸的参数化方案, 表示为表层土壤温度和含水率的函数, 公式的参数 则根据位山通量站的实测资料确定 [38] .…”
Section: 模型介绍unclassified
See 2 more Smart Citations