An overview is given of the development of methods for the prediction of fatigue driven delamination growth over the past 40 years. Four categories of methods are identified: stress/strain-based models, fracture mechanics based models, cohesive-zone models, and models using the extended finite element method. It is highlighted that most models are phenomenological, based on the observed macro-scale behaviour of test specimens. It is suggested that a more physics based approach, focusing on elucidating the mechanisms involved, is needed to come to a full understanding of the problem of delamination growth.