The interfacial tension of phase‐separated biomolecular condensates affects their fusion and multiphase organization, and yet how this important property depends on the composition and interactions of the constituent macromolecules is poorly understood. Here we use molecular dynamics simulations to determine the interfacial tension and phase equilibrium of model condensate‐forming systems. The model systems consist of binary mixtures of Lennard‐Jones particles or chains of such particles. We refer to the two components as drivers and regulators; the former has stronger self‐interactions and hence a higher critical temperature (Tc) for phase separation. In previous work, we have shown that, depending on the relative strengths of driver‐regulator and driver‐driver interactions, regulators can either promote or suppress phase separation (i.e., increase or decrease Tc). Here we find that the effects of regulators on Tc quantitatively match the effects on interfacial tension (γ). This important finding means that, when a condensate‐forming system experiences a change in macromolecular composition or a change in intermolecular interactions (e.g., by mutation or posttranslational modification, or by variation in solvent conditions such as temperature, pH, or salt), the resulting change in Tc can be used to predict the change in γ and vice versa. We also report initial results showing that disparity in intermolecular interactions drives multiphase coexistence. These findings provide much needed guidance for understanding how biomolecular condensates mediate cellular functions.