a Mass transport can significantly limit the rate of reaction and lead to concentration polarisation in electrochemical devices, especially under the conditions of high operating current density. In this study we investigate hierarchically structured micro-tubular solid oxide fuel cells (MT-SOFC) fabricated by a phase inversion technique and quantitatively assess the mass transport and electrochemical performance improvement compared to a conventional tubular SOFC. We present pioneering work to characterise the effective mass transport parameters for the hierarchically porous microstructures by an integrated computed fluid dynamics simulation, assisted by multi-length scale 3D X-ray tomography. This has been historically challenging because either imaging resolution or field of view has to be sacrificed to compensate for the wide pore size distribution, which supports different transport mechanisms, especially Knudsen flow. Results show that the incorporation of radially-grown micro-channels helps to decrease the tortuosity factor by approximately 50% compared to the conventional design consisting of a spongelike structure, and the permeability is also improved by two orders of magnitude. When accounting for the influence of Knudsen diffusion, the molecule/wall collisions yield an increase of the tortuosity factor from 11.5 (continuum flow) to 23.4 (Knudsen flow), but the addition of micro-channels helps to reduce it down to 5.3. Electrochemical performance simulations using the measured microstructural and mass transport parameters show good agreement with the experimental results at elevated temperatures. The MT-SOFC anode displays 70% lower concentration overpotential, 60% higher power density (0.98 vs. 0.61 W cm À2 ) and wider current density window for maximum power density than the conventional design.
Broader contextHierarchical materials are a popular choice not only for electrochemical energy devices such as fuel cells and batteries, but also for a range of functional materials including catalysts, diffusion media and membranes for waste processing. This study qualitatively and quantitatively illustrates the effectiveness of hierarchically structured pores in reducing gas transport resistance, providing new insights into advanced microstructure optimisation. Moreover, it is a common mistake in the modelling of hierarchical materials to assume the flow to be governed by continuum physics irrespective of the length scale, whereas in the region of finest structure, the molecule/wall collisions become dominant, which cannot be addressed by continuum physics. It is also impossible to define a relevant average pore size to describe the mass transport in these materials due to the wide pore size distribution. The integrated computed fluid dynamics (I-CFD) technique proposed by us for the first time herein, aims to overcome this problem and accurately characterise the effective mass transport in these complex hierarchical structures. The concept and techniques used in this study are believed to be of wide inter...