[1] We report the results of a yearlong noble gas study conducted in [2008][2009] together with continuous physical and chemical measurements collected in a monitoring well in an aquifer in southern Michigan. Conditions near the water table are correlated with noble gas concentrations, corresponding noble gas temperatures (NGTs), and precipitation events. This yearlong study is the first noble gas field test that has employed natural recharge and in situ monitored conditions, with minimal disturbance of the unsaturated zone. This detailed study demonstrates that significant changes in conditions near the water table can occur over a year that can greatly affect NGTs. Results show that precipitation events are detected within hours at the water table, but a lag in pressure response argues for a long time constant for gas transport within the unsaturated zone. There is strong evidence for the depletion of oxygen near the water table, which affects the noble gas air-saturated water component. During reducing conditions there is evidence for significant noble gas degassing. Rain from the passage of Hurricane Ike caused a significant shift in stable isotope ratios and injection of a large quantity of excess air and likely led to a much more oxygen-rich environment in the soil gas. Although individual models can account for NGTs over portions of the record, no single NGT model can account for all features observed over the entire study. It is likely that the NGT temperature proxy must be viewed as an average of recharge conditions over several years.Citation: Hall, C. M., M. C. Castro, K. C. Lohmann, and T. Sun (2012), Testing the noble gas paleothermometer with a yearlong study of groundwater noble gases in an instrumented monitoring well, Water Resour. Res., 48, W04517,