This study compared the sensitivity of water quality in tropical Aguamilpa Reservoir, as represented by normalized algae mass and dissolved oxygen, to selected projected changes from global climate change and development. The sensitivity of reservoir stratification as an indicator of reservoir sensitivity also was analysed. Model simulations indicated the reservoir was more sensitive to changes during the warm-dry season than at other times. Both indexes (normalized algal mass and dissolved oxygen mass) were more sensitive to changes in air temperature (climate change) and nitrogen loading (development) than to changes in flow. The sensitivity to air temperature was similar to, but generally less than, the sensitivity to nutrient inflow. At the bounding values for change (3°C for temperature; 50% increase in nitrogen loading), the algae mass sensitivities were 0.15 mg L À1 per 3°C and 0.2 mg L À1 per 50% nitrogen load increase, and the dissolved oxygen mass sensitivities were 0.7 mg L À1 per 3°C and 2.0 mg L À1 per 50% load increase. Changes in air temperature and nitrogen loadings affect the reservoir in different ways, air temperature mostly changing the timing of the algal growth with little change in peak values, while nutrient loadings change the peak values with little change in the timing. While the sensitivities are similar, the total algal mass change is significantly larger for nitrogen loading, compared to air temperature changes. These results imply global climate change effects can be partially mitigated by implementing management measures in the surrounding watersheds to minimize nutrient inflows, especially nitrogen in the case of Aguamilpa Reservoir.