A laser ignition system suitable for a hypersonic scramjet engine is considered. Wall-modeled large eddy simulation (LES) is used to study a scramjet-like geometry with a single hydrogen injector on the inlet, at a Mach 8 flight condition with a total enthalpy of 2.5 MJ. Detailed chemical kinetics and high fidelity turbulence modeling are used. The laser forms a kernel of high temperature plasma inside the fuel plume that briefly ignites the flow and leads to massive disruption of the flow structures around the jet, due to the expanding plasma kernel driving a blast wave that collides with the surrounding flow. The blast wave produces vorticity as it passes through the fuel–air interface, but comparably less than that produced by the jetting of the hot gas affected by the laser as it expands outward into the crossflow. The remnant of the plasma rolls up into a powerful vortex ring and noticeably increases the fuel plume area and the volume of well mixed reactants present in the simulation. These results indicate that the laser ignition system does more than just supply the energy to ignite the flow; it also substantially alters the flow structure and the mixing process.