2009
DOI: 10.3182/20090603-3-ru-2001.0554
|View full text |Cite
|
Sign up to set email alerts
|

Simulation of Less Master Production Schedule Nervousness Model

Abstract: In production decision making systems, Master Production Schedule (MPS) states the requirements for individual end items by date and quantity. The solution sensitivity to demand forecast changes, unforeseen supplier and production problem occurrences, is known as nervousness. This feature cause undesirable effects at tactical and operational levels. Some of these effects are production and inventory cost increases and, also, negative impacts on overall and labor productivity. To tackle this problem, we propose… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
3
0
1

Year Published

2014
2014
2024
2024

Publication Types

Select...
3
3
1

Relationship

0
7

Authors

Journals

citations
Cited by 8 publications
(4 citation statements)
references
References 15 publications
0
3
0
1
Order By: Relevance
“…Stability is achieved at the tactical level using a nervousness measure (Herrera & Thomas, 2009) which quantifies the variation in the planned quantities on a weekly basis. Some results consider the distributed decision and others disregard the distributed decision.…”
Section: Resultsmentioning
confidence: 99%
See 1 more Smart Citation
“…Stability is achieved at the tactical level using a nervousness measure (Herrera & Thomas, 2009) which quantifies the variation in the planned quantities on a weekly basis. Some results consider the distributed decision and others disregard the distributed decision.…”
Section: Resultsmentioning
confidence: 99%
“…(1) Tactical level: It uses an integer programming model that defines quantities as produced by item and period in a rolling horizon (Herrera & Thomas, 2009). Quantities are divided into sublots during the first period, and the sequence to be used in the manufacturing process must be defined using an integer programming model that solves the lot-streaming problem.…”
Section: Simulation Settingsmentioning
confidence: 99%
“…Problem Addressed Methodology [25] Nervousness in MRP systems under uncertainty Simulation modeling [26] Quantify nervousness in stochastic inventory control demand Rolling horizon planning procedure [27] Examining solutions for overcoming master production schedule nervousness Simulation model [28] Exploring undesirable effects of nervousness master production scheduling Simulation and mixed-integer programming model [29] Addressing the implications of the statistical findings compared to simulated MRP environments Simulation model [30] Considering the economic effect of the production schedule caused by nervousness Wagner-Whitin method [31] Stochastic lot sizing nervousness problem Mixed-integer programming [32] Unveiling SCN and presenting a strategic framework for disruption management under a fuzzy environment Fuzzy-DEMATEL [33] SCN analysis Fuzzy-ELECTRE [9] Introduction of global supply chain nervousness (GSCN) Delphi-fuzzy-AHP…”
Section: Referencementioning
confidence: 99%
“…Los PDS sumados a productos inteligentes entregan autonomía y crean nuevas oportunidades de mejora en reactividad y agilidad, debido a la descentralización de la toma de decisión y la generación de soluciones en cortos periodos de tiempo. Los productos inteligentes y los PDS pueden coexistir de forma dinámica y temporal, o incluso ser parte de las coordinaciones en los diferentes niveles de la empresa (Herrera et al, 2010). El modelo propuesto muestra que la coordinación entre las entidades de un sistema productivo es factible y destaca la importancia de la reactividad en la toma de decisiones para la generación de ambientes productivos más estables.…”
Section: Y Justo Cuando La Oruga Pensó Queunclassified