2016
DOI: 10.1016/j.ultramic.2015.10.018
|View full text |Cite
|
Sign up to set email alerts
|

Simulation of the enhancement factor from an individual 3D hemisphere-on-post field emitter by using finite elements method

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
16
3
3

Year Published

2016
2016
2022
2022

Publication Types

Select...
8

Relationship

0
8

Authors

Journals

citations
Cited by 30 publications
(22 citation statements)
references
References 13 publications
0
16
3
3
Order By: Relevance
“…This leads to challenges that remain to be overcome. For instance, the field enhancement factor, b, plays a critical role in predicting experimental results for microscale gaps due to the dominance of field emission; however, accurately determining b a priori can be difficult as it depends upon both the geometry and space-charge, [53][54][55] which will often depend upon the surface roughness of the electrodes. Experimental, theoretical, and simulation studies assessing the impact of surface roughness on these parameters may provide bounds that guide experimentalists in predicting the breakdown voltage, which becomes even more critical at smaller gap distances.…”
Section: Discussionmentioning
confidence: 99%
“…This leads to challenges that remain to be overcome. For instance, the field enhancement factor, b, plays a critical role in predicting experimental results for microscale gaps due to the dominance of field emission; however, accurately determining b a priori can be difficult as it depends upon both the geometry and space-charge, [53][54][55] which will often depend upon the surface roughness of the electrodes. Experimental, theoretical, and simulation studies assessing the impact of surface roughness on these parameters may provide bounds that guide experimentalists in predicting the breakdown voltage, which becomes even more critical at smaller gap distances.…”
Section: Discussionmentioning
confidence: 99%
“…A common practice to model a CNT or CNF is take the emitter as a cylindrical classical conductor capped with a conducting hemisphere, both of radius r. The total emitter's height is h. This model is known as the "hemisphere-on-cylindrical post" (HCP), have been extensively studied theoretically [6][7][8][9][10][11][12] and is known to have an analytical counterpart of great complexity as compared with computational solution [7]. In some studies, the hemi-ellipsoid model is preferred to represent the emitter for a couple of reasons: in this case, the the electrostatic potential distribution in the system has analytical solution and is a better representation of the emitter when the radius at the apex is much smaller than the radius at the base [7].…”
Section: Introductionmentioning
confidence: 99%
“…где X F = 1/U и Y F = ln(I/U 2 ), а индекс Elns обозначает приближение Элинсона. Экспериментальная ВАХ строится в тех же координатах и аппроксимируется рямолинейной зависимостью, что позволяет найти наклон S fit и отсечку ln(R fit ) для уравнения (10). По найденным величинам R fit и S fit вычисляются значения эффективных параметров S eff-Elns и β eff-Elns :…”
Section: варианты определения площади эмитирующей поверхностиunclassified
“…равна E 0 = 5.89 • 10 7 V/cm. Этот результат согласуется с литературными данными по моделированию аналогичных систем в других программных средах [10,26]. Для получения общей ВАХ модельного эмиттера его вершина была виртуально разделена на сегменты равной площади: пятьдесят сегментов в полусфере и еще пятьдесят на цилиндре под ней (рис.…”
Section: моделирование расчет и сравнение видов эмиссионных площадейunclassified
See 1 more Smart Citation