As use of composite materials increases, the search for suitable automated processes gains relevance to guarantee production quality by ensuring uniformity of the process, minimizing the amount of generated scrap and reducing time and energy consumption. Limitations on production by traditional means such as hand lay-up, vacuum bagging and in-autoclave methods, tend not to be as efficient when the size and shape complexity of the part being produced increases, motivating the search for alternative processes such as the Automated Tape Laying (ATL). This work aims to describe the process of modelling and simulating a composite ATL with in situ consolidation by characterizing the machine elements, using the finite differences method in conjunction with energy balances, in order to create a digital twin of the process for further control design. The modelling approach implemented is able to follow the process dynamics when changes to the heating element are imposed as well as to predict the composite material temperature response, making it suitable to work as a digital twin of a production process using an ATL machine.