In recent years, fully fashioned flat knitting fabrics have been extensively studied owing to their superior formability, rich application range and advanced knitting technology. However, the yarn tension fluctuations during the knitting process are difficult to control. The yarn tension in the knitting process is affected by many factors, such as the carriage running speed, structure, yarn properties, clothing parameters, and so on. In this work, a tension model of the yarn was established to explore the regularity of yarn tension variation, which was caused by the running speed and direction of the carriage when producing fully fashioned fabrics. Then, a tension compensation device was set up to reduce tension fluctuations to improve the quality of fully fashioned fabrics. Results showed that the tension fluctuation in the dynamic change of the tension was reduced to a certain extent by adding the tension compensation device. Meanwhile, the average value and fluctuating standard deviation of the yarn tension between the forward and backward processes were significantly reduced during a cycle of the knitting process. This indicates that controlling the tension fluctuation in the knitting process will effectively improve the surface evenness of the fully fashioned flat knitting fabric.