Original scientific paper https://doi.org/10.2298/TSCI19S4333MThe article presents the method of determining the temperature distribution in waterwall tubes of the combustion chamber. To simulate the operating conditions of waterwall tubes have been selected the model with distributed parameters, which is based on the solution of equations of the energy, mass and momentum conservation laws. The purpose of the calculations is determining the enthalpy, mass-flow and pressure of the working fluid flowing inside the tubes. The balance equations have been transformed into a form in which spatial derivatives are on the left, and the right side contains time derivatives. Then the time derivatives were replaced with backward difference quotients, and the obtained system of differential equations was solved by the Runge-Kutta method. The analysis takes into account the variability of fluid parameters depending on the mass-flow at the inlet of the tube and heat flux on the surface of the tube. The analysis of fluid parameters was carried out based on operating parameters occurring in one of the Polish supercritical power plants. Then it was compared with characteristics for systems operating at increased or reduced thermal flux on the walls of the furnace or systems operating at increased or reduced massflow of the working fluid at the inlet to the waterwall tube.