Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Fluid wave code communication is used in layered water injection intelligent monitoring system, but model of fluid transient flow wave signal transmission is still unknown. Based on the fluid energy equation of steady flow, a transmission mathematical model of fluid transient flow wave signal in intelligent layered water injection system was established. The model can accurately describe the transient flow wave transmission characteristics in the tubular string of water injection wells. The transient flow wave signals and influencing factors generated by the ground electric control valve and the downhole water distributor were studied, and the transmission mechanism of the signal in the water injection tubular string was revealed. Studies show that ground and downhole transient flow wave signals are generated by discharge changes caused by changes in the opening degree of the ground valve and the downhole water distributor. The length of the water injection tube has no effect on the downlink transmission of the wellhead signal, but has a certain influence on the uploading of the downhole signal. Numerical calculations show that the flow rate of the water injection tube has a great influence on the amplitude of the pressure signal. The larger flow rate can generate larger signal amplitude, which is beneficial to the signal transmission, signal detection and processing. It was verified by the experiments and simulations that the pressure and flow changes in the downhole and wellhead had good consistency during the transmission of transient flow waves. It is found that the greater the variation of opening degree, the greater the amplitude of transient flow wave signal, which is beneficial to the wave signal transmission. The optimal settings for the valve opening are selected as $$100\% \rightleftarrows 0\%$$ 100 % ⇄ 0 % . This study has theoretical guiding significance for the design and performance improvement of fluid wave code communication systems.
Fluid wave code communication is used in layered water injection intelligent monitoring system, but model of fluid transient flow wave signal transmission is still unknown. Based on the fluid energy equation of steady flow, a transmission mathematical model of fluid transient flow wave signal in intelligent layered water injection system was established. The model can accurately describe the transient flow wave transmission characteristics in the tubular string of water injection wells. The transient flow wave signals and influencing factors generated by the ground electric control valve and the downhole water distributor were studied, and the transmission mechanism of the signal in the water injection tubular string was revealed. Studies show that ground and downhole transient flow wave signals are generated by discharge changes caused by changes in the opening degree of the ground valve and the downhole water distributor. The length of the water injection tube has no effect on the downlink transmission of the wellhead signal, but has a certain influence on the uploading of the downhole signal. Numerical calculations show that the flow rate of the water injection tube has a great influence on the amplitude of the pressure signal. The larger flow rate can generate larger signal amplitude, which is beneficial to the signal transmission, signal detection and processing. It was verified by the experiments and simulations that the pressure and flow changes in the downhole and wellhead had good consistency during the transmission of transient flow waves. It is found that the greater the variation of opening degree, the greater the amplitude of transient flow wave signal, which is beneficial to the wave signal transmission. The optimal settings for the valve opening are selected as $$100\% \rightleftarrows 0\%$$ 100 % ⇄ 0 % . This study has theoretical guiding significance for the design and performance improvement of fluid wave code communication systems.
Separate-layer injection technology is a highly significant approach for enhancing oil recovery in the later stages of oilfield production. Both separate-layer and general injection information are crucial parameters in multi-layer oilfield injection systems. However, the significance of general injection information is usually overlooked during the optimization process of separate-layer injection. Moreover, conventional optimization schemes for separate-layer injection fails to meet the immediate and dynamic demands of well production. Consequently, a separate-layer injection optimization method based on ANN-Res model was proposed. Firstly, the primary controlling factors for production were identified through grey correlation analysis and ablation experiments. Then, a data-driven model was established with artificial neural network (ANN), in which the residual block was utilized to incorporate general injection information, eventually formed an ANN-Res model that integrates separate-layer and general injection information. Finally, a workflow for separate-layer injection optimization was designed in association with the ANN-Res model. Analysis of primary controlling factor for production shows that the combination of separate-layer and general injection information for production prediction leads to redundancy. The results of injection-production prediction demonstrate that the ANN-Res model is significantly better than that of the ANN model which only inputs separate-layer or general injection information. Furthermore, the result of optimization proves the proposed method can be successfully applied to injection optimization, realizing the purpose of increasing oil production and decreasing water cut, thereby improving oilfield development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.