A general framework for designing an optimum control strategy for the Hemopump is described. An objective function was defined that includes four membership functions, each constructed based on the desired values of one of the four members: stroke volume, mean left atrial pressure, aortic diastolic pressure and mean pump rotation speed. The Hemopump was allowed to operate either at a constant speed or at two different speeds during a cardiac cycle. The goal was to maximise the objective function by varying the magnitude and timing of the pump speed. Using a canine circulatory model, it was demonstrated that, in general, different cardiac conditions or different clinical objectives require different operation parameters. For example, when a left ventricle with minor ischaemia was simulated, and the main objective was to increase stoke volume, the objective function was maximised, from a value of 0.877 when the pump was off, to 0.946 when the pump was operated at speed 2 (18 500 revolutions min(-1)). On the other hand, for a severely ischaemic heart, the optimum pump speed became speed 3 (20 000 revolutions min(-1)), which maximized the objective function to 0.943 (from 0.707 when the pump was off). The results also suggest that it is more beneficial to operate the Hemopump at two different speeds during a cardiac cycle (a higher speed during systole and early diastole, and a lower speed during late diastole) than to maintain a constant speed throughout the cardiac cycle.