Over the past decades, China has experienced severe compound natural disasters, such as extreme rainfalls, which have led to significant losses. In response to the challenges posed by the lack of a clear investigation process and inadequate comprehensiveness in evaluating the natural disaster chains, this study proposes a comprehensive retrospective simulation strategy for emergency investigation and simulation of heavy rainstorm–flash flood–debris flow chain disasters at the county–town level. The primary aim is to avert potential new chain disasters and alleviate subsequent disasters. This study combines emergency investigation efforts with hydrodynamic models to digitally simulate and analyze compound chain disasters triggered by an extreme rainfall event in the Haihe River regional area, specifically Gaoyakou Valley, Liucun Town, Changping District, Beijing, in July 2023, along with potential new disasters in adjacent regions. The findings indicate that the heavy rainstorm chain disaster on “7.29” resulted from a complex interplay of interrelated natural phenomena, including flash floods, debris flows, urban floodings, and river overflows. Hantai Village has experienced flash flood and debris flow events at different times in this area. Should the rainfall volume experienced in Liucun Town be replicated in the Ming Tombs Town area, approximately 6.2 km2 of land would be inundated, leading to damages to 458 residences and impacting around 240 ha of agricultural land. The anticipated release of floodwater from the reservoir would lead to significant impacts on downstream residents and roads. Our research can improve the efficacy of emergency investigations and assessments, which in turn can help with the management and reduction of disaster risks at the grassroots level.