The use of compressed air foam (CAF) for fire suppression has undergone rapid development in recent years. It has been successfully applied in fire incidents in the petroleum and chemical industries. The increasing need to fighting fires at high elevations necessitates an understanding of the rheological characteristics, pressure gradient changes, flow characteristics, and regularities of CAF within long firehoses. Therefore, this paper focuses on an investigation of the flow characteristics of CAF at foaming agent concentrations ranging from 0.1% to 1.2% and gas–liquid ratios ranging from 5 to 25. Specifically, it explores foam characteristics, pressure loss, and the relationship between flow rate and foaming agent concentration. The findings reveal that CAF exhibits four flow patterns: wave flow, elastic flow, ring flow, and dispersion flow. For most CAF firefighting applications, a foaming agent concentration of 0.3%–0.5% and a gas–liquid ratio of approximately 10 are suitable. However, for fire isolation purposes, a foaming agent concentration of 0.7%–1.0% and a gas–liquid ratio of over 15 should be employed. By utilizing a power-law rheological model and an experimental regression method, a prediction model is obtained for the flow characteristics and pressure loss of CAF in pipelines. The predictions of the model exhibit an error of less than 10% when compared with experimental results, validating the model. The results of this study provide a theoretical basis and technical support for understanding liquid supply resistance loss, which is crucial for maximizing firefighting effectiveness.