[1] Landforms, morphologically similar to aeolian yardangs but formed by erosion of bedrock by currents on an estuarine rock platform, are described for the first time. The geometries of the "yardangs" are described and related to semi-lemniscate shapes that minimize hydraulic drag. The processes of bedrock erosion by the reversing sedimentladen tidal currents are described, and a semi-quantitative model for landform evolution is proposed. The model casts doubt on the "simple" role of the maximum in the twodimensional vertical suspended sediment flux distribution and the consequent distribution of potential kinetic energy flux in the process of shaping the rock wall facing the ebb flow. Rather, although the kinetic energy flux increases away from the bed, the sediment becomes finer and abrasion likely is insignificant compared with coarse sand abrasion lower in the profile. In addition, the vertical distribution of sediment flux is mediated by topographic forcing which raises the elevation at which bed load intersects the yardang prow. Consequent erosion leads to ebb-facing caprock collapse and yardang shortening. In contrast, the role of ebb-flow separation is paramount in mediating the abrasion process that molds the rock surface facing the flood flow. The length of yardangs is the least conservative dimension, reducing through time more rapidly than the height and width. Width is the more conservative dimension which implies that once the caprock is destroyed, scour over the obstacle is significant in reducing body height, more so than scour of the flanks which reduces width. The importance of vertical fissures in instigating the final breakdown of smaller yardangs and their extinction is noted. Similarities to aeolian yardang geometries and formation principles and processes are noted, as are the differences. The model has implications for aeolian yardang models generally.