Three genes, gnd, pgl, and fbp, relevant to the pentose phosphate pathway (PPP) were overexpressed in Corynebacterium glutamicum IWJ001, leading to increase of l-isoleucine production. The transcriptional levels of gnd, pgl, and fbp significantly increased in IWJ001/pDXW-8-gnd-fbp-pgl. Compared with the control strain IWJ001/pDXW-8, intracellular NADPH/NADP ratios in IWJ001/pDXW-8-gnd and IWJ001/pDXW-8-gnd-fbp cells grown for 36 H increased threefold and fourfold, respectively, indicating that overexpression of gnd and fbp redirected the carbon flux to PPP. Intracellular NADPH/NADP ratio in IWJ001/pDXW-8-gnd-fbp-pgl grown for 36 H was similar to IWJ001/pDXW-8, suggesting that the NADPH produced by PPP could be quickly consumed for l-isoleucine production. 10.9 and 28.96 g/L of l-isoleucine was produced in IWJ001/pDXW-8-gnd-fbp-pgl in shake flask cultivation and fed-batch fermentation, respectively. In addition, IWJ001/pDXW-8-gnd-fbp-pgl grew fast, its dry cell weight reached 49 g/L after 48 H, whereas the start strain IWJ001/pDXW-8 reached only 40 g/L. After 96 H fermentation, l-isoleucine yield on glucose in IWJ001/pDXW-8-gnd-fbp-pgl reached 0.138 g/g. The results demonstrate that carbon flux redirection to PPP is an efficient approach to enhance l-isoleucine production in C. glutamicum.