A temporal change in the stable isotope (SI) composition of jellyfish in the Kiel Fjord, Western Baltic Sea, was documented by analyzing δ13C, δ15N and δ34S of bell tissue of Aurelia aurita and Cyanea capillata in the period between June and October 2011. A strong and significant temporal change in all SI values of A. aurita was found, including an increase of ~3 ‰ in δ13C, a decrease of ~4 ‰ in δ15N and sharp decline of ~7 ‰ in δ34S. While knowledge gaps in jellyfish isotope ecology, in particular the lack of reliable trophic enrichment factors, call for a conservative interpretation of our data, observed changes in particular in δ34S, as indicated by means of a MixSIR mixing model, would be consistent with a temporal dietary shift in A. aurita from mesozooplankton (>150 µm) to microplankton and small re-suspended particles (0.8–20 µm) from the benthos. Presence of a hitherto unidentified food source not included in the model could also contribute to the shift. During the 2-month occurrence of C. capillata, its isotope composition remained stable and was consistent with a mainly mesozooplanktonic diet. Mixing model output, mainly driven by δ34S values, indicated a lower proportion of A. aurita in the diet of C. capillata than previously reported, and thus to a potentially lesser importance of intraguild predation among jellyfish in the Kiel Fjord. Overall, our results clearly highlighted the potential for substantial intraspecific isotopic seasonal variation in jellyfish, which should be taken into account in future feeding ecology studies on this group.Electronic supplementary materialThe online version of this article (doi:10.1007/s00227-016-2892-0) contains supplementary material, which is available to authorized users.