Standard-Nutzungsbedingungen:Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.
Terms of use:
Documents in
AbstractIn this paper, we propose a unified Bayesian approach for multivariate structured additive distributional regression analysis where inference is applicable to a huge class of multivariate response distributions, comprising continuous, discrete and latent models, and where each parameter of these potentially complex distributions is modelled by a structured additive predictor. The latter is an additive composition of different types of covariate effects e.g. nonlinear effects of continuous variables, random effects, spatial variations, or interaction effects. Inference is realised by a generic, efficient Markov chain Monte Carlo algorithm based on iteratively weighted least squares approximations and with multivariate Gaussian priors to enforce specific properties of functional effects. Examples will be given by illustrations on analysing the joint model of risk factors for chronic and acute childhood malnutrition in India and on ecological regression for German election results.