Summary. Chronic myeloid leukaemia (CML) is believed to represent a stem cell disorder involving all three cell lineages. The typical chromosomal aberration, the Philadelphia chromosome, is the translocation (9;22)(q34;q11). Several studies with cytogenetics, fluorescence in situ hybridization (FISH), or polymerase chain reaction have investigated the presence of the t(9;22) in different cell compartments. However, questions still remain. In six cases of CML we combined the standard May-Grü nwald-Giemsa staining with FISH at the single-cell level and were able to demonstrate that not only all maturation stages of granulopoiesis, erythropoiesis, and megakaryocytes, but also plasma cells, eosinophils, basophils and monocytes carried the Philadelphia chromosome in 53-98% of samples. Using immunological identification of single cells we were able to demonstrate that the t(9;22) is detectable in 34% of CD3-positive T lymphocytes, in 32% of CD19-positive B lymphocytes, and in 82% of CD34-positive precursor cells. The results give new insight into the biology of CML and may have implications for future therapeutic strategies.