Abstract. The interaction of salicylaldehyde L-serine Schiff base (L) with human serum albumin (HSA) was examined by fluorescence emission spectra at the excitation wavelength 290 nm. Through fluorescence quenching experiments, it was confirmed that the combination of L with HSA was static quenching process. Thermodynamic parameters, such as ΔG, ΔH and ΔS, were calculated at different temperatures, showing that van der Waals force or hydrogen bond interaction were mostly responsible for the binding of L to HSA. The experiments results showed that the microenvironment and the conformation of HSA changed during the binding reaction.