This paper presents the results of a motion planning algorithm that has been used in an intelligent citrus-picking robot consisting of a six-link manipulator. The real-time performance of a motion planning algorithm is urgently required by the picking robot. Within the artificial potential field (APF) method, the motion planning of the picking manipulator was basically solved. However, the real-time requirement of the picking robot had not been totally satisfied by APF because of some native defects, such as the large number of calculations used to map forces into torques by the Jacobian matrix, local minimum trap, and target not reachable problem, which greatly reduce motion planning efficiency and real-time performance of citrus-picking robots. To circumvent those problems, this paper proposed some novel methods that improved the mathematical models of APF and directly calculates the attractive torques in the joint space. By using the latter approach, the calculation time and the total joint error were separately reduced by 54.89% and 45.41% compared with APF. Finally, the novel algorithm is presented and demonstrated with some illustrative examples of the citrus picking robot, both offline during the design phase as well as online during a realistic picking test.