Microorganism-based methods have been widely applied for the treatment of phenol-polluted environments. The previously isolated Acinetobacter lwoffii NL1 strain could completely degrade 0.5 g/L phenol within 12 h, but not higher concentrations of phenol. In this study, we developed an evolutionary strain NL115, through adaptive laboratory evolution, which possessed improved degradation ability and was able to degrade 1.5 g/L phenol within 12 h. Compared with that of the starting strain NL1, the concentration of degradable phenol by the developed strain increased three-fold; its phenol tolerance was also enhanced. Furthermore, comparative genomics showed that sense mutations mainly occurred in genes encoding alkyl hydroperoxide reductase, phenol hydroxylase, 30S ribosomal protein, and mercury resistance operon. Comparative transcriptomics between A. lwoffii NL115 and NL1 revealed the enrichment of direct degradation, stress resistance, and vital activity processes among the metabolic responses of A. lwoffii adapted to phenol stress. Among these, all the upregulated genes (log2fold-change > 5) encoded peroxidases. A phenotypic comparison of A. lwoffii NL1 and NL115 found that the adapted strain NL115 exhibited strengthened antioxidant capacity. Furthermore, the increased enzymatic activities of phenol hydroxylase and alkyl hydroperoxide reductase in A. lwoffii NL115 validated their response to phenol. Overall, this study provides insight into the mechanism of efficient phenol degradation through adaptive microbial evolution and can help to drive improvements in phenol bioremediation.