We examined the expression of the bacteriophage T4 nrdA and nrdB genes, which encode the a2 and 02 subunits, respectively, of ribonucleoside diphosphate reductase, the first committed enzyme in the pathway of synthesis of the deoxyribonucleoside triphosphates. T4 nrdA, located 700 bp upstream from nrdB, has been shown previously to be transcribed by two major transcripts: a prereplicative, polycistronic message, Tu, originating at an immediate-early promoter, PEI that is 3.5 kb upstream from nrdA, and a postreplicative message commencing from a late promoter in its 5' flank. We have found a third promoter initiating a transcript at 159 nucleotides upstream from the reading frame of nrdB. PrdB functions only in the presence of the T4 motA gene product, which is required for middle (time) promoters, and therefore the onset of nrdB transcription is delayed more than 2 min after infection. Because of the distance of nrdA from PEI the inception of nrdA transcription (delayed early) coincides closely with that of nrdB. An apparent termination site, tA, occurs about 80 bp downstream from nrdA. Some of the polycistronic mRNA reading through the site after 5 min contributes to nrdB transcription. nrdA and nrdB genes in an uninfected host have been reported to be transcribed only coordinately. In contrast, T4 nrdA and nrdB are initially transcribed separately onto the PE and PnrdB transcripts, respectively, but at about 5 min after infection are transcribed both coordinately and on separate transcripts. Evidence is presented that Tu coordinately transcribes a deoxyribonucleotide operon in the order: frd, td, gene 'Y,' nrdA, nrdB. Since the 02 subunit is known to be formed after the a2 subunit, the expression of the nrdB gene determines the onset of deoxyribonucleoside triphosphate synthesis and thus of T4 DNA replication.