An electrochemiluminescent (ECL) detection system in CE with an electrically heated carbon paste electrode (CPE) was developed. This CPE could be heated by a 100 kHz alternating current (ac) generated from a function generator, and the temperature of the electrode (Te) could be controlled. To evaluate the feasibility and reliability of this system, the electrochemically generated Ru(bpy)(3) (3+)-based ECL reaction was used for detection of triethylamine (TEA) and tri-n-propylamine (TPrA). Ru(bpy)(3) (2+) was added into the separation buffer solution with precolumn mode. Effects of several important factors were investigated to acquire the optimum conditions. Under the optimum conditions, the heated electrode has been shown to provide advantages by the measurement of ECL intensity in CE at elevated Te. Compared with the conventional electrode at the room temperature, using heated CPE could improve peak shape and gain good reproducibility with lower detection limits and wider linearity ranges. Compared with the room temperature, the linear ranges and detection limits (S/N = 3) for TEA and TPrA were improved about one magnitude when the Te was 39 degrees C. In contrast, the RSD was lower than for the electrode at room temperature.