Abstract-Audio-based receiver localization in indoor environments has multiple applications including indoor navigation, location tagging, and tracking. Public places like shopping malls and consumer stores often have loudspeakers installed to play music for public entertainment. Similarly, office spaces may have sound conditioning speakers installed to soften other environmental noises. We discuss an approach to leverage this infrastructure to perform audio-based localization of devices requesting localization in such environments, by playing barely audible controlled sounds from multiple speakers at known positions. Our approach can be used to localize devices such as smart-phones, tablets and laptops to sub-meter accuracy. The user does not need to carry any specialized hardware. Unlike acoustic approaches which use high-energy ultrasound waves, the use of barely audible (low energy) signals in our approach poses very different challenges. We discuss these challenges, how we addressed those, and experimental results on two prototypical implementations: a request-play-record localizer, and a continuous tracker. We evaluated our approach in a real world meeting room and report promising initial results with localization accuracy within half a meter 94% of the time. The system has been deployed in multiple zones of our office building and is now part of a location service in constant operation in our lab.