There is evidence that intrauterine growth restriction (IUGR) is associated with altered dopaminergic function in the immature brain. However, the relevant enzyme activities have not been measured in the living neonatal brain together with brain oxidative metabolism. Therefore, fluorine-18-labeled 6-fluoro-L-3,4-dihydroxyphenylalanine (FDOPA) was used together with positron emission tomography to estimate the activity of the aromatic amino acid decarboxylase in the brain of 10 newborn IUGR piglets (2 to 5 d old; body weight, 908 Ϯ 109 g) and in 10 normal-weight (3 to 5 d old; body weight, 2142 Ϯ 373 g) newborn piglets. The regional transport of FDOPA to the brain and the clearance rate of labeled metabolites from brain tissue were broadly similar in the two groups. However, the regional rate constant for back flux from the brain was markedly increased in IUGR piglets for striatum (72%) and frontal cortex (83%) (p Ͻ 0.05). Furthermore, the rate constant for conversion of FDOPA to fluorodopamine was markedly increased (between 48% in cerebellum and 91% in mesencephalon, p Ͻ 0.05) in all brain regions of IUGR piglets studied. Thus, it is suggested that IUGR induces an up-regulation of aromatic amino acid decarboxylase activity that is not related to alterations in brain oxidative metabolism. An inadequate nutritional supply due to uteroplacental insufficiency or restricted maternal protein intake late in gestation is largely responsible for asymmetrical IUGR (1). Reduced fetal growth can be viewed as a compensation for the reduced supply as long as fetal demand is not critically restricted, leading to decompensation with asphyxia and even death (2). The compromised nutritional state has adverse effects on fetal physiology and metabolism including changes of hormonal homeostasis (3), which are thought to be associated with postnatal growth failure and a greater propensity to develop cardiovascular metabolic disease or behavioral abnormalities later in life (4). Therefore, the period of fetal adaptation, characterized by reduced growth due to restricted glucose and amino acid availability but largely compensated placental respiratory function (5), reflects a functional state that may lead to both acceleration or delay in organ maturation (6, 7).The importance of the intrauterine environment for fetal brain development has been stressed by studies showing persistent behavioral abnormalities in prenatally stressed animals (8). Rats exposed to noise and light stress during the last trimester of pregnancy produce offspring with altered locomo-
ABSTRACT474