“…Hajela and Lin [32] proposed the WBGA for multi-objective optimization. Each solution x i in the population uses a particular weight Konda et al [5] Taguchi (L 9 )→S/N ratio→regression→nondominated point Single MS, SR Puri and Bhattacharyya [6] Taguchi (L 27 )→ANOVA→F test Single MRR, SR, DD Huang and Liao [11] Taguchi (L 18 )→grey→ANOVA→F test Multi MRR, SR, GW Shajan and Shanmugam [12], Taguchi (L 18 )→regression→NSGA Multi CV, SR Chiang and Chang, [13] Taguchi (L 18 )→grey Multi MRR, SR Manna and Bhattacharyya [7] Taguchi (L 18 )→ANOVA→Gauss elimination model Single MRR, SR, SG, GC Ramakrishnan and karunamoorthy [14] Taguchi (L 16 )→S/N ratio→Weighting (MRSN)→ANOVA Multi MRR, SR, WWR Mahapatra and Amar [15] Taguchi (L 27 )→S/N ratio→regression→GA→weighting factor Multi MRR, SR Prasad and Gopala [16] Factorial CCD (32)→ANOVA→regression→NSGA Multi MRR, SR Saurav and Siba [17] Taguchi (L 27 )→grey→ANOVA Multi MRR, SR, kerf Muthu et al [18] Taguchi (L 9 )→grey→ANOVA Multi MRR, SR, kerf Kamal et al [19] Taguchi (L 18 )→grey→ANOVA Multi MS, SR, DD Susanta and Shankar [20], Taguchi (L 18 )→S/N ratio→Grey→MRSN→WSN→ANOVA Multi MRR, SR, kerf Kamal et al [21], Taguchi (L 18 )→grey→ANOVA Multi MRR, SR Balasubramanian and Ganapathy [22] Taguchi (L 8 )→grey→ANOVA Multi MRR, SR Somashekhar et al [23] Taguchi (L 9 )→grey→ANOVA Multi MRR, SR, overcut Kapil and Sanjay [24] Taguchi (L 27 )→S/N ratio→regression→NSGA-II Multi MRR, SR Nixon and Ravindra [25] Taguchi (L 16 )→ANOVA→regression→GA Multi MRR, SR, DE Kamal et al [26] Taguchi (L 18 )→grey+entropy→ANOVA Multi MRR, SR, AE, ROC Neeraj et al [27] RSM (32)→ANOVA→regression→desirability Multi CS, DD Zhang et al [8] RSM (32)→ANOVA→regression→BPNN-GA Single MRR, SR Bagherian et al [28] Taguchi (L 27 )→ANFIS→GRA Multi CV, SR Rao and Krishna [29] Taguchi (L 27 )→ANOVA→regression→NSGA-II Multi MRR, WWR MS machining speed, DD dimensional deviation, GW gap width, CV cutting velocity, SG spark gap, GC gap current, AE angular error, ROC radial overcut, CS cutting speed, BPNN-GA backpropagation neural network combining with genetic algorithm, ANFIS adaptive neuro-fuzzy inference system vector w i ={w 1 , w 2 ,….w k } in the calculation of summing objective function. The weight vector w i is embedded within the chromosome of each solution.…”