In this paper, we propose a stochastic failure and optical network topology (SFONT) model that can be used to comprehensively analyze the resilience of optical networks against a large number of possible earthquakes. We study an optical network densification problem, where dense network topologies are generated using the proposed SFONT model. Further, a seismic-risk aware optical network densification (SRA-OND) scheme is proposed with a view to design the future optical networks robust against earthquakes. The proposed SFONT model has been evaluated at various stages of network densification. To validate the capability of the proposed SFONT model to emulate real-world networking and failure scenario, we also perform a similar analysis based on RailTel optical network topology, seismic hazard maps, and real past earthquake data from India. Simulations indicate that the proposed SFONT model can be used to estimate and analyze the impact of network-resilience schemes on optical networks for a large number of possible earthquakes.