Wing design optimization has been studied extensively and is of continued interest as optimization tools are developed and become more accessible. In each of these studies, certain assumptions and simplifications are made to make the design problem tractable. However, it is difficult to find systematic studies in which several considerations are added or removed one at a time to study how much impact they have. In this work, we examine how certain physical considerations (viscous drag, wave drag, thrust loads, and inertial relief from structural, fuel, and engine masses), impact the aerostructural optimization results for three distinct aircraft wings. The goal is to help develop a rough idea of how important these physical considerations are. We do this using gradient-based optimization and a multidisciplinary design optimization framework, OpenMDAO. We use the open-source tool OpenAeroStruct that couples a vortex lattice method to a finite element method. We establish a baseline aerostructural design optimization problem then perform a series of optimizations, each with one physical consideration removed from the baseline case. We find that depending on the size of the aircraft and flight conditions, the importance of some of these physical considerations varies considerably whereas the importance of others do not. Specifically, the optimal designs change radically without proper viscous and wave drag considerations and smaller aircraft with more distributed propulsion are more affected by the inclusion of engine loads.