Summary:
Stereo-EEG is a widely used method to improve the diagnostic precision of presurgical workup in patients with refractory epilepsy. Its ability to detect epileptic activity and identify epileptic networks largely depends on the chosen implantation strategy. Even in an ideal situation, electrodes record activity generated in <10% of the brain and contacts only record from brain tissue in their immediate proximity. In this article, the authors discuss how recording stereo-EEG simultaneously with other diagnostic methods can improve its diagnostic value in clinical and research settings. It can help overcome the limited spatial coverage of intracranial recording and better understand the sources of epileptic activity. Simultaneous scalp EEG is the most widely available method, often used to understand large epileptic networks, seizure propagation, and EEG activity occurring on the contralateral hemisphere. Simultaneous magnetoencephalography allows for more precise source localization and identification of deep sources outside the stereo-EEG coverage. Finally, simultaneous functional MRI can highlight metabolic changes following epileptic activity and help understand the widespread network changes associated with interictal activity. This overview highlights advantages and methodological challenges for all these methods. Clinical use and research applications are presented for each approach.